ICU Survival Prediction Incorporating Test-Time Augmentation to Improve the Accuracy of Ensemble-Based Models

نویسندگان

چکیده

This work presents a novel method for applying test-time augmentation (TTA) to tabular data. We used TTA along with an ensemble of 42 models achieve higher performance on the MIT Global Open Source Severity Illness Score dataset consisting 131,051 ICU visits and outcomes. achieved AUC 0.915 private test set (19,669 admissions) won first place at Stanford University's WiDS Datathon 2020 challenge Kaggle, while Acute Physiology Chronic Health Evaluation (APACHE) IV model (commonly survival prediction in literature) 0.868. In addition increasing score, our also reduces “unfair” bias.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of time planning and task complexity on accuracy of narrative task performance

هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...

Artificial neural networks improve the accuracy of cancer survival prediction.

BACKGROUND The TNM staging system originated as a response to the need for an accurate, consistent, universal cancer outcome prediction system. Since the TNM staging system was introduced in the 1950s, new prognostic factors have been identified and new methods for integrating prognostic factors have been developed. This study compares the prediction accuracy of the TNM staging system with that...

متن کامل

Iterated Time Series Prediction with Ensemble Models

We describe the use of ensemble methods to build proper models time series prediction. Our approach extends the classical ensemble methods for neural networks by using several different model architectures. We further suggest an iterated prediction procedure to select the final ensemble members. This is an extension of well know the crossvalidation scheme for model validation.

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3091622